
ProgrammingParadigms-Lecture05  

Instructor (Jerry Cain):Hey, everyone, welcome. I don't have any handouts for you 
today. You're all crankin' on Assignment 1, which was intended to be very short through 
Sunday night. The first real assignment went out Wednesday. That's due next Thursday 
evening. And at least until the mid-term, I'm gonna establish this Wednesday to next 
Thursday schedule with all the assignments so there's some reliability as to how the 
workload ebbs and flows.  

When I left you last time, I was probably about 60 percent of the way through my lsearch 
implementation. I'm trying to go from type specific to generic, but I'm trying to do that in 
the C language.  

So this is what I wrote last time.  

void *lsearch  

And let's see if I can write the parameters out a little bit more neatly this time.  

void *key  

void *base int  

m is the length of that array 

int lm size is the size of the elements 

And that's technically all the implementation that lsearch needs in order to figure out 
where the boundaries are between neighboring elements.  

The fifth parameter is the one I want to focus on for the next 20 minutes. It has to have 
this as a prototype. I like the asterisk, we don't need it right there but I like to keep it 
there, and then I take two void *'s. I don't need to provide parameters names here because 
I'm not implementing this function here.  

The basic algorithm for a linear search from front to back, that doesn't change. It's just the 
fact that we're trying to present an implementation that doesn't care about any specific 
one data type.  

So I want to do this for int i = 0; i < mi++. With each iteration, I want to manually 
compute the address of the i'th element. I can certainly do that in terms of base, lm size is 
the quantum distance to move with each hop, and then i obviously tells me which element 
I'm interested in. Internally, I want to do this:  

void * lm (address)  



This is the thing that's going to be compared against that key right there to figure out 
whether or not we have a match.  

This is equal to numerically:  

base plus i times om size.  

But we mentioned last time that this is strictly pointer arithmetic against a typeless 
pointer. No, I'm sorry, the pointer has a data type; it's a type void * so it doesn't know 
what it's pointing to. Several people have suggested, or asked, why they just didn't make 
default to normal mac when this is a void *. The specification of C just said I don't want 
to allow point arithmetic by default against a void *, because there was a clear rule for 
what point arithmetic means when this is strongly typed.  

When it's weakly typed with a void *, very generic, I'm just pointing to anything, and I 
have no idea what. You can't do this, the hack, and it really is a hack, but it's a well-
known hack, is to sedate base into behaving like a character pointer just long enough to 
actually get a number out of this expression.  

Drag the base here, say you're pointing to characters. Do technically point arithmetic 
against the character pointer. This, as an expression, is an integer. It's technically 
multiplied by size of char, but that's one. So this ends up being a char * that happens to 
point to a boundary between the i minus 1th and the i'th element. I assigned it to a void *. 
You do not have to cast the overall thing to a void * if you don't want to because this is a 
more general pointer; it's willing to take on any pointer type.  

If after you do this, you use the comparison function written by the client that knows how 
to compare the things that reside at these addresses, pass in a key, pass in a lm address. 
And if that comes back with a match of zero, then go ahead and return (I want to return 
the pointer), so go ahead and return lm address. This ends the entire four-loop. And if I 
get to the end and I have nothing to return, I'll just return null as a centinal that nothing 
worked out.  

This replaces the double-equals that sits in between two integers from the integer version 
we wrote in the middle of last lecture. Double-equals between two strong types that are 
atomic, it knows how to do comparison. In almost all cases, it just does a bitwise 
comparison and can come out with a -1, or a +1, or a 0.  

When you go generic on the C compiler, you have to say that I know how to compare the 
elements because I know, even though this is generic code, I know what type of array I'm 
searching. This code does not. So you have to pass in a little bit of a callback, or a hook, 
to tell the implementation how it should be comparing your elements.  

This is easy to understand. It's easy to just look at this and understand what's going on 
because you know what linear search is; that's not the hard part. The hard part is getting 



all the pointer math correct in the char * trick, and actually aligning these things up 
properly, and invoking the comparison function properly.  

Using this as a client is at least as difficult as understanding this code. If I want to go, just 
think in terms of the int domain, and I have the following, I have intArray is equal to (this 
is a shorthand way of initializing an array) int size is equal to, I'll just hard code it as 6. If 
I want to search for the number seven, I actually have to do the following: number = 7. I 
have to set aside space for the key that I'm interested in because I have to pass the address 
of that thing as the very first element to the lsearch call. Does that make sense?  

You know that this is laid out as an array of length 6. The 7 resides there. I'm passing that 
and that width and 6 to the lsearch routine. I'm hoping that it returns that right there. I 
want to find the place where the very first seven in the array resides.  

int * found = (This is how I would call lsearch.) lsearch & of number. Array (No & is 
needed. There's an implicit & because it's really & of array of zero) pass in 6, pass in size 
of int. That at compile time evaluates to 4, at least in our world. And then I have to 
provide a comparison function. I want to write a comparison function that's dedicated to 
comparing integers.  

So I'm gonna write that right now, int compare. Now, this will have to be defined as a 
function before I call this code right here, that I'm having to implement it afterwards. If 
it's the case that found equals equals null, then you're sad, otherwise you're happy. Does 
that make sense to people? Let me write the comparison function so we can understand 
why it has to take the form that it is, int cmp, if it's gonna actually compile and match this 
as a prototype, it absolutely has to take two void *'s and return an integer. That is the 
class of function that's accepted as the fifth parameter right there. You may ask, well, can 
I just actually write a comparison function that takes two int *’s and returns an int? And 
the answer is you could, but you'd have to cast it to be this type right here. It turns out 
that this is all pointers of the same size. You would pass them then as int *'s, and they 
would be absorbed as void *'s. But it's just a much better thing to do is to actually write 
the comparison function to match that prototype exactly. The implementation of that is a 
little clunky, but it doesn't surprise you, it just has a lot of asterisks involved.  

void * lm 1  

void * lm 2 

Just because some – let's write the seven right here, this is the thing called number. On an 
arbitrary iteration, it may pass this int as the first argument to the comparison function. 
This right here is being invoked right there. It's gonna pass in the address of that one 
isolated seven right there every single time. The second parameter's gonna get that, and if 
it fails then that, and if it fails then that, etc., until it runs out of space. I have to return a -
1, or a +1, or a 0 depending on whether they match or not. I also, because I am writing 
this function, specifically to make this call, this constrains the prototype to take two void 
*'s, but I know that they're really int *'s. So because I'm writing that code as a client, I can 



reinterpret the void *'s to be the int *'s that they really are. So I will do this, int * ip 2, and 
I will just set it equal to lm 1 and lm 2. It turns out in a pure C compile you do not need to 
do a cast there, it just understands that the cast is implicit; it has to do it. So I have these 
local variable, ip 1 and ip 2, that not only point to this and that right there, but they 
actually understand them to be four-by quantities to be interpreted as integers. Does that 
make sense? So all I have to do is return *ip 1 - *ip 2. I'm relaxing a little bit on the 
return type, I'm letting zero meet a match. And of course, if that difference is zero than of 
the same number, -1 and +1, I could constrain it to be that. I just want it to really be a 
negative number or a positive number to reflect the delta between the two. Does that 
make sense to people? So if you understand this, great. If you understand this, even 
better. I'm sure most of you understand this even if it's the first time you've seen this type 
of code. Once we actually understand how all of this stuff works you're gonna be very, 
very happy. It's a little hard to understand the very first time you see it. But you have to 
recognize that this is not exactly the most elegant way to support generics, it's just the 
best that C, with it's specification that was more or less defined 35 years ago, can actually 
do. All the other languages you've ever heard of they are all so much younger that they've 
learned from C's mistakes and they have better solution for supporting generics. There 
are some plus's to this. It's very fast. You only use one copy of the code, ever, to do all of 
your lsearching. The template approach, it's more type safe. You get more information 
and compile time, but you get code bloat because you've got one instance of that lsearch 
algorithm for every single data type you ever searched for. Does that make sense? It’s 
easier to get this right because you’re not dealing with atomic types that are themselves 
pointers. We have integers right here. This gets a lot more complicated when you start 
dealing with the problem of lsearching an array of C-strings. Okay. So you’re going to 
have an array of char *’s, and you’re gonna have to search for a particular char * to see 
whether or not you have a match or not. These are the int boards. I want to deal with this 
setup right here. I have a small array 1, 2, 3, 4. And let’s say I have an array of C-strings. 
Let’s just assume that it’s initialized this way. And I have an array of five little notes 
there. And I want to search the array using lsearch for an E-flat. So here’s my key that 
I’m searching for; it points to an E-flat. I should emphasize that these are really character 
arrays that are null-terminated. Same thing with this. This right here is a character, 
character, character, character. This is a character array. That means that’s a char *; char 
*, char *, char *. The address of the array right there, the arrow I’ve just drawn in, is 
technically of type char * *. How is lsearch gonna absorb that? It’s going to absorb it as a 
void *. The only way it’s gonna be able to compute that address, and that address, and 
that address as part of the linear search is because we’re also gonna communicate the size 
of a char *, so it can manually compute the addresses of all those boundaries. The 
comparison function that needs to be written in order to do this has to be willing to accept 
addresses of that type and that type right there. This is where things can get confusing 
because you can kinda drift back and say, well, everything’s a pointer so why does it 
matter that I pass in this as opposed to this? You’re gonna see, when we write the 
comparison function, that the number of hops from the tail of the arrow that’s passed in 
really matters. If lsearch passes this type of pointer to your comparison function then you 
really are two hops away from the actual characters that are compared to one another. 
Does that make sense to people? You may ask, well, why doesn’t the comparison 
function just pass these pointers in? The answer is that lsearch has no idea that those 



things are really pointers. The only thing it knows is if they happen to be for four-by-
fourth of information. Make sense? Let me declare this: char * notes array is equal to, I’ll 
write them as string constants, A-flat, F-sharp, B, then G-flat, and then an isolated D. I 
can talk about how these things are stored in a little bit. They’re not in the heap, they’re 
actually global variables that happen to be constant. It’s like normal global variables, 
except they happen to be character arrays that reside up there, and these are replaced at 
load time with the base addresses of the A, F and the D.  

char * (favorite note), as if I have a favorite note, it is E-flat.  

Let me be very clear about this picture again – actually, let me draw it again; favorite 
note points to E-flat. The actual array happens to be of length 5. It points to strings A-flat, 
F-sharp, B, G-flat, and D. It’s a cleaner picture. I want to search the array for my favorite 
note E-flat. The way you have to do this:  

char * * (found)  

Now, that enough is a headache. To understand why it’s a char * * as opposed to a char *. 
But we’ll get to that in a second. This is the way you would call lsearch. I have to pass in 
the address of my favorite note (I don’t have to but I’m going to, I’ll explain why in a 
second), & favorite note. I’m gonna pass in notes, that’s the name of the array. Think 
about the data type of notes. Notes is the & of the zeroth element. Since the zeroth 
element is a char *, it’s the base address of that capital A. Note is synonymous with that 
value right there. So even though it’s being absorbed by lsearch as a void *, because it 
was written generically so that’s the best it can do, we know that it’s really a char * *. I 
have five of these notes pass in size of char *. Why char * as opposed to char * *? 
Because I’m interested in the actual width of these boxes so that lsearch can actually 
compute the boundaries between elements. And then, finally, with capital S and capital 
C, I’m just contriving the name of some function called StrCmp. Where actually there’s 
two versions of StrComp, the one I’m writing and the one that’s built into the C library, 
but the one that’s in the C library doesn’t have capital letters there. The reason I’m 
passing in the & here is because I want the true data type of the key, that’s held by 
lsearch, to really be of the same type as all the pointers that are computed manually as 
part of the lsearch implementation. Does that make sense? If I know that this, and that, 
and that, and that, and that are all really char * *’s, it just makes life a little bit easier, if 
you have some symmetry inside code that’s otherwise very complicated, to make sure 
that the key that’s being compared against those five arrows is of the same data type. It 
doesn’t have to be. I’ll get to that in a second. But I’m writing it this way. So I pass in the 
& of favorite notes. So I get the & of the tail of that arrow that points to E-flat, two hops 
away from the capital E. I have to write the StrComp function. Even though lsearch 
returns a void *, it either returns a null, which we can check just like we did up there, or it 
returns one of these five arrows. Now, because E-flat isn’t in there it’s gonna return null. 
But if I had asked for the matching pointer to a G-flat, it would return that. I know that 
they’re really char *’s in here. Lsearch doesn’t but I do. So when I know it’s returning 
this type of pointer, I know that it’s truly of type pointer to char * or char * *. Make 
sense?  



Student: 

[Inaudible] the same as [inaudible] char * *?  

Instructor (Jerry Cain):Yeah. The question is the size of char * the same as the size of 
char * *? The answer is, yes, because all pointers, at least in our world, are the same byte, 
and they’re always the same size in any given system, and any given executable. You 
asked, I’m sure, just to be clear that they’re both the same size, but you really do want 
this for readability purposes to be the true data type that’s held inside the boxes of the 
array.  

I could, if I wanted to, put 17 *’s there, and it would still work. That doesn’t mean the 
code is the best way we could write it. Does that make sense?  

Student:[Inaudible?]  

Instructor (Jerry Cain):You don’t have to. Right now, just for symmetry purposes, I’m 
making sure that the key and the addresses of all the elements in the array are of the same 
true type. I’ll explain how we didn’t have to bother with the & right here. You only can 
get away with that if you really understand what’s going on. And I’m just not assuming 
that that’s the case in the first 15 minutes of the example. But after I write it the one way, 
I’ll explain how we could have gotten rid of that &. Okay. Let me get rid of these 
asterisks.  

Okay. So I have to write StrCmp. I’m gonna do it over on this board.  

int StrCmp takes two void *’s. I’ll come up with better names this time, void * vp 2. The 
first one is always gonna be that address right there because that’s what I passed in, & of 
favorite note. I know it’s actually of type char **. On an arbitrary iteration, it might pass 
in the address of that right there.  

So now that I’ve caused the implementation of lsearch, that right there, to just 
momentarily jump back to my type-safe code, the signature isn’t type safe, but the code 
that’s inside can become type-safe if I actually cast things properly. So I’m gonna go 
ahead and do this:  

char * s1 (for string 1) is equal to *char * * vp1, *char * * vp 2  

Now, why does that look the way it does. I’m casting vp1 and vp2 to be of the type that I 
know that they really are, this type and that type right there. They’re two hops away from 
bonafide characters. After I do that, I dereference them once so that this as a value, and 
maybe this as a value are sitting in local variables called s1 and s2.  

The reason I like that is because there is a built-in function as part of the clib that is 
completely in tune with the fact that the notion of a string is supported as character arrays 
that happen to be null-terminated, and that we pass around to those strings by address of 



the first character. This is the address of the capital E. this is the address of the capital G 
right there.  

What I can do is I can pass the buck to this built-in function with a lower case s and a 
lower case c, s1, s2. It takes two char *’s, and it knows how to do the booforce 
comparison of characters one after another, as long as they match continues. If it ever 
finds two characters that don’t match then it knows that it can’t return 0, it just returns the 
difference between the two ASCII values of the non-matching characters. That even 
applies if you hit a backslash 0 and 1 before you hit a backslash 0 and the other one. The 
delta is still what’s returned. Does that make sense to people?  

Student:[Inaudible] char *?  

Instructor (Jerry Cain):Why didn’t I just cast it to be a char *?  

Student:Yeah.  

Instructor (Jerry Cain):That’s actually the question everybody asks right at this minute, 
the last 18 times I’ve taught the lecture.  

So this right here is saying – is recognizing – I’m recognizing the vp1 that’s being passed 
to me is really two hops away from actual characters. So that’s why the double * is really 
the right thing there. And then I want to get two values that are just one hop away from 
the real data because that’s what the built-in StrComp wants. StrComp, just like my 
intCompare function, it returns 0, -1 or +1, so it happens to return the value that I’m 
interested in.  

So you’re questioning why a double * here and then dereference once when I might be 
able to just get rid of those two things and put char *? Is that what you’re asking?  

Student:Yeah.  

Instructor (Jerry Cain):Okay. The problem is is that * in front of the open paren, as 
opposed to the other two *’s on each line, that really is an instruction to hop forward once 
in memory and do a dereference. If I pass this as vp2, I say that you’re not pointing to a 
generic pointer you’re actually pointing to a char *. That’s what the char * * cast does. 
And then when I dereference it once I do that. Given the way I’ve set up the call right 
there, if I were to do this, this would take this right here and it would assume that the 
actual material right there are actual characters. Does that make sense?  

Student:Actually, I understand that [inaudible].  

Instructor (Jerry Cain):This right here?  

Student:[Inaudible.]  



Instructor (Jerry Cain):Well, that’s actually the part that does the hop and goes from 
here to there right there. You’re just dereferencing a pointer. Does that make sense?  

Student:Yeah.  

Instructor (Jerry Cain):Was there another question flying up somewhere?  

Student:Why [inaudible] char * * [inaudible]?  

Instructor (Jerry Cain):Well, what’s the alternative?  

Student:Just like referencing the [inaudible].  

Instructor (Jerry Cain):You actually could do that. That’s where it confuses matters a 
little bit. But a void * you can’t dereference because it doesn’t know what it’s pointing to. 
A void * * knows that it’s pointing to a void *. Does that make sense to people?  

I actually want to bring it into the char * domain as quickly as possible because then I 
really know sooner than later that I’m actually dealing with strings. Otherwise, I’m just 
leveraging off of my understanding of memory in a way that might not be clear to the 
person reading the code. Other questions?  

Now, somebody asked about this right here. My implementation of lsearch up here, it’s 
very careful to pass in key as the first of the two parameters to every call-up comparison 
function. Does that make sense?  

Somebody asked what happens if I forget the & there. Well, my callback function still 
interprets whatever pointer is passed in as a char * *, so rather than this being passed as 
the first argument to the comparison function every time, and pass this in, it would still 
do a dereference after it cast this to be a char * *. So that would mean momentarily it’s 
pretending that the E and B, and the backslash 0, and the mystery character that’s right 
there, that that actually represents a char *, and then it would pass that to StrComp. That 
would not be good because it would jump to the E-flat mystery address in memory and 
just assume that there are really characters there.  

However, not that I like this for this example, but if you know what you’re doing and you 
want to pass this in right here, you just don’t want to deal with the overhead of a 
dereference when you know you don’t need to, you could pass this in. And you could 
recognize that the first argument that’s being passed in is actually one hop away from the 
characters, and the second one is actually two hops away from the characters.  

Student:[Inaudible.]  

Instructor (Jerry Cain):Well, I can say the way I wrote it first is the way it’s typically 
written. Because of the symmetry, I think coders, I don’t know if they like to see it, I 
think they’re just in the habit of only dealing with comparison functions that really deal 



with the same incoming data type. And that’s not the case if one’s a char * for real and 
one’s a char * * for real.  

So it is more common for you to put an & right there, and to do this just so that the first 
line and the second line kinda have the same structure.  

Now, for Assignment 2 search certainly comes up. As opposed to all of these examples, 
you know that there’s some sordid flavor to the arrays that you’re searching there. If you 
haven’t read Assignment 2, again, I’ll try to be as generic as possible in my description. 
But you basically have the opportunity to binary search as opposed to linear search for 
Assignment 2.  

There’s a built in function called bsearch. It turns out that there’s a built-in function 
called lsearch, as well. It’s not technically standard, but almost all compilers provide it, at 
least on UNIX systems. I’m gonna want you to use the generic bsearch algorithm, which 
has more or less the same prototype as lsearch right here, that’s why I chose the prototype 
the way I did there, and it just does a generic binary search. You can implement it again 
yourself. If you already did then don’t go back and call bsearch that’s built-in. But I’d 
actually prefer you to use the built-in just so you learn how to use it.  

This is the prototype for that built-in: void * is the return type. It’s called bsearch, or 
naturally binary search. It takes a void * called key, it takes a void * called base, it takes 
an int, I think it’s called len for length. I actually like n better, though, n always means 
size of an array. Int lm size, and then it takes the comparison function that takes two void 
*’s. The algorithm – in many ways the pointer mechanics are exactly the same as they are 
up there, the only part that’s different is that it kinda does this binary search to figure out 
what index to probe next. It assumes that the data is in sorted order.  

Now, I am going to say this, and you have to recognize it even though it doesn’t sound 
very deep and insightful, it is. If you want to do the bsearch use this function for 
Assignment 2, and you want to do it as elegantly as possible. You have to recognize, kind 
of in sync with what I did over here, when I erased the & right here, you can pass in the 
address of anything you want to provided the comparison function knows that the first 
argument is gonna be the address of that something. Does that make sense to people?  

With the & I pass in a char * *, without it I pass in a char *. I could have constructed a 
record and put four pieces of information in there, passed in the & of it, and then I could 
have cast the address that comes in as the first argument to be the address of that type of 
struct. The reason I’m saying that is because you’re gonna want to do exactly that for 
Assignment 2. You’re gonna need more than one piece of information to be available to 
the implementation of what you pass in right here.  

As far as this is concerned, I’ve never said this in lecture before, but I’m glad I’m 
remembering right now, it has to truly be an actual function. CS106b and 106x, I don’t 
want to say they’re careless about, but they’re just not concerned about it at the time. 
They use the word function everywhere for any block of code that takes parameters. 



When I say function, I’m talking about this object-oriented-less unit, which is just some 
block of code that gets called as a function that has no object or class declaration around 
it.  

When I’m talking about the type of number functions or functions that are inside classes, 
I don’t refer to them as functions, I refer to them as methods. The difference between a 
function and a method, they look very similar, except that methods actually have the 
address of the relevant object lying around as this invisible parameter via this invisible 
parameter called this.  

The type of function that gets passed right here has to be either a global function that has 
nothing to do with the class or it has to be a method inside a class that’s declared as static. 
Which means that it does not have any this pointer passed around on your behalf behind 
the scenes.  

I’ll probably send them an email just about that one point. Because if there are two or 
three problems that everybody has with Assignment 2, one of them is related to this thing 
right here. Do you guys know about the this pointer from 106b and 106x? I think they 
actually used this even more in 106a, when they talked about Java, and it seems to come 
up more there.  

C++ methods, those number functions that are defined in classes, normally pass around 
the address of the receiving object via an invisible parameter called this. And if you need 
to, you don’t very often have to, but if you need to you can actually refer to the keyword 
this inside the implementation of any method, and it just evaluates to the address of the 
object that’s being manipulated. That’s what makes a method different than a regular 
function. Regular functions have nothing to do with objects so there’s no invisible this 
pointer being passed around. You have to pass one of those object-oriented-less normal 
functions, or the name of one, as the fifth primary to bsearch.  

Student:Why is it that the comp function [inaudible)] behind before.  

Instructor (Jerry Cain):This right here?  

Student:Yeah.  

Instructor (Jerry Cain):Because these parenthesis were here, it’s clear syntactically that 
it has to be a function pointer. And until about four years ago the asterisk inside was 
always required, and now it’s just not. Because just the lexors and the [inaudible] know 
how to just decide if this is a function pointer type.  

I like the pointer there, for various reasons, just because that’s how I used them for the 
first 17 years I coded in C. And then someone went and changed it on me, and I’m like, I 
don’t care, I want to use it the old way. That’s a very C way of looking at it, too. There’s 
nothing modern about C, so you shouldn’t adopt any of it to modernisms. Any other 
questions at all?  



There are a billion little generic algorithms I could write, but I don’t want to focus on 
these. You now have all the material I think you need to really make progress this 
weekend on Assignment 2 if you want to. Assignment 2 is definitely a jump up from 
Assignment 1. Assignment 1 is intended to be all about UNIX, and just whenever you 
had time to get to it just to learn the UNIX that’s necessary and then code up 20 lines of 
code to get RSG running. This is the one that really has some real C-isms that are 
required for the first half of the program. The second half, where you do the search, that’s 
very C++-ish. Cubes and stacks and all that kind of stuff you’ve seen that before.  

What I want to do now is I want to transition from generic algorithms to generic data 
structures. And you probably have more practice with generics and templates in C++ 
with the vector, and the q, and the map, and the stack, and all of those things. I think 
more often than not, people program in C++ as if it’s C that happens to have objects, and 
they use the vector and they use the map. They don’t use the ones from 106, they use the 
ones from the actual built-in STL library. A lot of people code procedurally, and write C 
functions, and they happen to incidentally use the vector and the map as data structures.  

What I want to do is I want to write the same exact thing, support the same type of 
functionality in some C generics, recognizing that we don’t have references, and we don’t 
have templates, we don’t even have classes. So we have to do the best we can to imitate 
the modern functionality that’s offered by C++ and Java, and their templates, using C that 
has none of it.  

So what I want to do is I want to slow down a little bit, and I want to implement a stack 
data structure. I want to make it int specific just so we have a clear idea as to how the 
generic should be implemented. But I’m just gonna go up front and say, we’re gonna just 
implement everything in terms of int ’s so there’s no void * business yet.  

Just as there in C++, you’ll normally be very aggressive about separating behavior and 
implementation using the dot-h and the dot-CC scheme. But if you’re a pure C you don’t 
use dot-cc as in extension you use dot-C so you know that the file contains pure C code 
as opposed to C++ code.  

So what I want to write here is a stacked out h file, and this is how I’m gonna do it. 
There’s several ways to do it in C, but I want to imitate the way you’re used to it from 
C++ as much as possible.  

There’s no class keyword in C, but there is the struct. We’re gonna use that. There’s no 
const, there’s no public, and there’s no private. Our compiler actually supports const, but 
there’s certainly no public and there’s certainly no private. So what I want to do is I want 
to come as close to the definition of a class right here as possible using just C syntax. 
And this is how you do that:  

typedef struct (The typedef keyword is required in C; it’s not required in C++).  

And then I want to do the following:  



int * lm’s  

int logical (length)  

int allocative (length)  

And that is it. I want to call this thing a stack.  

Now, in the dot-h file, when I define the struct right there, technically all three fields are 
exposed so they’re implicitly public. Documentation above the dot-h, at least in 
Assignment 3 when we start doing this type of stuff, it’s very clear that we’re just 
exposing these three fields for convenience so people can actually declare stacks as local 
variables, and the compiler knows that they’re 12 bytes tall but that you should not 
manipulate these three things at all.  

You should just rely on the functions, not methods, but functions right here to manipulate 
them. And just take this, accept for your ability to declare the stack and that you know 
that it has three fields inside. Think of any struct as a black box where you just aren’t 
afraid to manipulate the 12 bytes that are inside.  

I want to write a constructor function. I want to write this destructor, or disposal function, 
and then I want to write an is empty function, a pop function, a push function, things like 
that. So here’s the prototype of the first thing I’m interested in:  

void * stack (new)  

All I’m gonna do is I’m gonna pass in or expect the address of some stack that’s already 
been allocated.  

We were talking about the this pointer before. You know how when you call a 
constructor in a class it has access to that this pointer, it’s because it’s passed in as like 
the -1’th parameter, or this invisible parameter before everything else. All we’re doing is 
we’re being very explicit about the fact that the address of the receiving structure is being 
passed in as the zeroth argument. We have to because that’s what C allows us to do.  

I also have this function stack dispose. I want to identify the address of the stack structure 
that should be disposed. This is gonna be a dynamically allocated array that’s not 
perfectly sized. So I want to keep track of how much space I have and how much of it 
I’m using. I also want these methods. Let’s forget about the is empty and the def, let’s 
just do it with the real functions.  

Void stack push  

What stack am I pushing onto? The one identified by address right there. What integer’s 
getting pressed? This one. And actually we’ll go with an int right here, stack pop. Which 



stack am I popping off of? The one that’s identified by address right there. I just want to 
be concerned with those things right here.  

I don’t know that I’m gonna be able to implement very much because I only have about 
nine minutes left, but I can certainly, without code, just like pictures that serves a pseudo 
code, just give you some sense as to how things are gonna work.  

The allocation of a stack, when you do this, conceptually all I want to happen is for me to 
get space for one of these things right here. That means that this, as a picture, is gonna be 
set aside. And you know, based on what we’ve talked about in the past, that it’s 12 bytes 
if the lm field is at the bottom, and that the two integers are stacked on top of it. But as 
far as the declaration is concerned, it doesn’t actually clear these out, or zero them out 
like Java does, it just inherits whatever bits happen to reside in the 12 bytes that are 
overlaid by this new variable.  

It’s when I call stack new that I pass in the address of this. Why does that work, and why 
do we know it can work? Because we identify the location of my question-mark-holding 
stack pass into a block of code that we’re gonna allow to actually manipulate these three 
fields. And I’m going to logically do the following:  

I’m gonna take the raw space, that’s set up this way. I’m gonna set it’s length to be zero. 
I’m gonna make space for four elements. And I’m gonna store the address of a 
dynamically allocated array of integers, where these question marks are right here, and 
initialize the thing that way. That means that that number can be used not only to store 
the effective depth of the stack, but it can also identify the index where I’d like to place 
the next integer to be pushed.  

So because I’m pre-allocating space for four elements, that means that this is a function. 
It’s gonna be able to run very, very quickly for the very first calls. And it’s only when I 
actually push a fifth element, that I detect that allocated space has been saturated, that I 
have to recover and panic a little bit and say, oh, I have to put these things somewhere 
else. That it’ll actually go and allocate another array that’s twice as big, and move 
everything over, and then carry on as if the array were of length 8 instead of 4 all along.  

You’ve done this very type of thing algorithmically. At least you’ve seen it with the C++ 
implementation of templates, and at least just these type of data structures from 106b and 
106x. I’m just doing this because I want to be able to start talking about the same 
implementation with int ’s. Using 107 terminology we’re gonna be dealing with arrays. 
You can imagine that when we go generic this is still gonna be an array, just like the 
arrays passed to lsearch and bsearch are, but we’re gonna have to manually compute the 
insertion index to house the next push call, or to accommodate the next push call, and do 
the same thing for hop.  

I do this [inaudible] int i = 0; i < 5, i++. I want to go ahead and I want to do a stack push. 
Which stack? The one at that address, and I just want to pass in i. Just draw the picture as 
to how everything’s updated. And then right here, rather than dealing with the pop 



problem, which is actually not anymore difficult than the push problem, I just want to go 
ahead and stack dispose & of s.  

So from a picture standpoint, the very first iteration of this thing is gonna push a zero 
onto the stack, it’s gonna push it at that index. So I’m gonna put a zero right there, and 
put a 1 right there. It’s that 1 that more or less marks the implicit boundary between 
what’s in use and what’s not in use. Make sense?  

Next several iterations succeed in sending that to 2 after there’s a 1 there, and 3 to put a 2 
there. It makes this a 4, puts a 3 right there. It detects that now as the boundary between 
what’s in use and what’s not in use. You could reallocate right here if you wanted to. I 
wouldn’t do it yet, I would only do it when you absolutely need to on the very fifth 
iteration of this thing. So what has to happen is that on the very last iteration here I have 
to do that little panic thing, where I say, I don’t have space for the 4. So I have to go and 
allocate space for everything.  

So I’m gonna use this doubling strategy, where I’ve gotta set aside space for eight 
elements. I copy over all the data that was already here. I free this. Get this to point to this 
space as if it were the original figure I’ve allocated. Forget about that smaller house, I’ve 
moved into a bigger house and I hated the older house. And then I can finally put down 
the 4 and make this a 5 and make this an 8. So that’s the generic algorithm we’re gonna 
be following for this code right here.  

Now, I do have a few minutes. Let me implement stack new and stack disposed. And 
then I’ll come back and I’ll deal with stack push the beginning of Monday. I just want to 
go ahead and put the dot-h here and have its dot-c profile right to its right.  

I want to implement stack new. So take a stack address, just like that, recognize that s is a 
local variable. It has to make the assumption that it’s pointing to this 12-byte figure of 
question marks that is that tall right there.  

So what I want to do is I want to go in. I want to s arrow logical n = zero. I want to do s 
arrow alloc len = 4, and then I want to do the following: I want to do s arrow lm’s = (this 
is a function you have not seen before) malloc times 4 times size of int . Now, if I tell you 
that this is dynamic memory allocation you’re not gonna be surprised by that because the 
word alloc, the substring alloc, comes up in the function. This is C’s earlier solution to 
the operator new solution. We don’t have new and delete in pure C, we have this raw 
memory allocator called malloc.  

Operator new takes account and an implicit data type, because you actually say new into 
4 or new double of 20. You don’t do that in C. Not that we should be impressed with the 
idea, but the way malloc works is it expects one argument to be the raw number of bytes 
that you need for whatever array or whatever structure you’re building. And if I want 
space for four integers that’s certainly in sync with this line, where I’m saying I’m 
allocating four of them, you have to do four times the size of the figure, it goes and 
searches for a blob in heap, that’s 16 bytes wide, and it returns the address of it.  



There is some value in actually doing this. You’ve seen the assert function in the 
assignment starter code, or Assignment 1. There is this function called assert. It’s actually 
not a function it’s actually a macro. There’s this thing you can invoke called assert in the 
code, which takes a boolean value, takes something that functions as a test. It effectively 
becomes a no op if this test is true, but if this is false assert actually ends the program and 
tells you what line the program ended at. It tells you the file number containing and the 
line number of the assert that broke.  

The idea here is that you want to assert the truth of some condition, or assert that some 
condition is being met, before you carry forward. Because if I don’t put this here and 
malloc failed, it couldn’t find 16 bytes (That wouldn’t happen but just assume it could) 
and it returned null, you don’t want to allow the program to run for 44 more seconds for 
it to crash because you de-referenced a null pointer somewhere. You just don’t want to 
dereference a null pointer because it’s not a legitimate pointer it’s a centinal meaning 
failure. So you don’t want to dereference failure because that amounts to more failure.  

And then you’ll get something, while the program is running, called a seg fault or a bus 
error. And I’m sure some of you have seen them. Those are things you don’t want to see. 
You’d rather see an assert, where it tells you what line number was the problem as 
opposed to a seg fault, which just says, I’m a seg fault, and notice your program stops.  

This can be stripped out very easily so that it doesn’t exist in production code. You 
actually don’t want this failing if a customer is using this code because then it makes it 
clear that your code broke as opposed to their code. This can be very easily stripped out 
at compile time without actually changing the code.  

So when we come back on Monday I’ll finish the rest of these three and then we will go 
generic on you.  

[End of Audio]  

Duration: 52 minutes 


