
CS107 Handout 19S 
Spring 2008 May 5th, 2008 

Assignment 5 Solution 
Brought to you by Julie Zelenski and Jerry Cain. 

 
Problem 1: Binary numbers and bit operations 
 
• A few examples are below. Checking your results in decimal is the easiest way to 

verify you’ve got it correct. 
 
 58 = 32 + 16 + 8 + 2          00111010 
+47 = 32 + 8 + 4 + 2 + 1     + 00101111 
105                            01101001  = 64 + 32 + 8 + 1 = 105 
 
100 = 64 + 32 + 4              01100100 
-27 = 16 + 8 + 2 + 1         - 00011011 
 73                            01001001  = 64 + 8 + 1 = 73 
 
20 = 16 + 4                    00010100 
*3 =  2 + 1                  * 00000011 
60                             00010100 
                              00010100  
                               00111100 = 32 + 16 + 8 + 4 = 60 
 
• Adding one to the maximum signed short (32767) gives the most negative short –

32768.  Adding one to the maximum unsigned short (65535) returns zero.  In both 
cases, it is doing the usual binary arithmetic and carrying the last bit into the sign bit 
or off the end, wrapping back into range.  No error is reported in either case. 

 
• Assigning from larger to smaller type just truncates to the lower byte(s).  For 

example, assigning the short 1025 to a char produces 1.  The other direction has no 
problem or truncation. 

 
• The remainder of a number when divided by 4 can be found in the bits in the places 

below 4 (i.e. the bits in the 2 and 1’s place). Thus we want to get the value of just 
those bits from the number. A bitwise AND can pull out a specific subset of bits, by 
AND’ing with something that has just those bits on. The integer 3 has only the 2 and 
1 bits on, so if we take a number and bitwise AND it with 3, we can quickly compute 
its remainder when divided by 4: 

 printf(“Remainder of %d is %d\n”, num, num & 3); 
 

If the upper byte of a short is all zero bits, then we can assign it to a char without data 
loss. Using a similar approach as above, we can extract just the high order bits from a 
number to see whether they are all zeros. The short with all the upper bits on is 32512 
(32767-255). 

 printf(“High byte of %d clear? %d \n”, num, (num & 32512) == 0)); 
           



  2  

There are easier and more portable ways to compute the number to AND against 
(using bitmask or bit shifting), but we won’t get into it for now. 

• To change a number’s sign in two’s complement, we need to invert all the bits and 
add one. Inverting all the bits can be done with a bitwise XOR with that number that 
has all bits on. This operation will turn all bits previously off on and all bits on off, 
exactly what we want. The value with all bits on is –1. 

 printf(“Start with %d, change sign %dn”, num, (num ^ -1) + 1);    
 
• Here’s a simple encryption/decryption program that reads a file from standard input 

and writes the result to standard output. It encrypts every character with a constant 
key of ‘Z’. You could adapt it to encrypt by shorts or ints and using different keys if 
you felt like it. If you run this program twice on the same file, you will get the 
original contents back. 

 #include <stdio.h> 
 
 #define KEY ‘Z’ 
 
   int main(void)  
 { 
  int ch; 
 
  while ((ch = getc(stdin)) != EOF) 
   putc(ch ^ KEY, stdout); 
  return 0; 
 } 

 
 
Probelm 2: ASCII and extended ASCII 
As expected, the mapping for characters in the bottom half of the range is well-
established, but the upper half is full of variation. For example, the ASCII value 153 is 
mapped to the trademark symbol on the Mac, but to the u with a circumflex over it on 
UNIX. 
 
Setting up a web page or sending an email with extended ASCII characters is therefore 
not a reliable activity.  Unless the receiver is using a system with the same character 
mappings, there is no guarantee your intention is properly interpreted. 
 

 



  3  

Problem 3: It's just bits and bytes 
This is from an epic, results can differ due to machine endianness or instruction 
encoding: 
 
•  

The string "hi!" as an integer: 1751720192, as an instruction: call 0xa1a59c00. 
•  

The integer 3 as float: 4.20389539e-45, which is definitely not 3.0. 
•  

struct binky b; 
 printf("Printing 4-byte struct as float %f\n", *(float *)&b); 
 

•  
 int i; 
 char *s = "Hi there!"; 
 i = *(int *)s; 
 
•  
 short s = 1;    // s will have 1 in LSB, 0 in MSB       
 char ch = *(char *)&s; // read out first byte of short 
 printf("Endian is %s.\n". (ch == 0 ? "big" : "little")); 
 

•  
 float f = 3.14159;   
•  printf(“Value %d\n”, f);   // printf will use unconverted bits 
 
 
Problem 4: Identical Outputs 
As we’ve stressed in lecture, type information is used at compile-time to make decisions 
about how many bytes of data to load/store and calculating offsets and the like, but all 
that is left at runtime is a sequence of instructions and data laid out in memory for it to 
operate on.  Looking at the generated code tells you little about what a given 4 bytes is: 
an int? a struct fraction *? a sequence of 4 characters? It is possible for many different 
C functions to compile to the same output— the exact same sequence of CPU 
instructions is appropriate if the functions access the same memory locations in the same 
pattern.  For example, look at this set of machine instructions: 
 

R2 = Mem[SP] 
R3 = R2 + 4 
R4 = Mem[SP + 4] 
Mem[R4] = R3 

 
a)  

void PtrOnly(void) { 
 int **b, *a; 
 *b = &a[1];  // or equivalently, *b = a + 1 
} 



  4  

 
b)  

void IntOnly(void) { 
 int arr[2]; 
 *(int *)(arr[1]) = arr[0] + 4; 
} 
 

 
Problem 5: Find the linked list 
The basic strategy is to scan the heap from bottom to top, at each location try to interpret 
the bytes as though they were the head node of such a list. We check what would be the 
data field and if it matches what we want, we access what would be the next field, verify 
that it points into a valid area of the heap and then dereference and see if what follows 
matches the rest of the list. 
 

const void *const kHeapEnd =  
 ((char *)kHeapStart + kHeapSize - sizeof(list)) 
 
bool isListOnHeap(void)  
{ 
 const char *pos; 
 
 for (pos = kHeapStart; pos <= kHeapEnd; pos++) { 
  const struct list *current = (struct list *)position; 
  if ((current->data == 1) && isInHeap(current->next)) { 
   current = current->next; 
   if ((current->data == 2) && isInHeap(current->next)) { 
    current = current->next; 
    if (current->data == 3) && (current->next == NULL))  
     return true; 
   } 
  } 
 } 
  
 return false; 
} 
 
static bool isInHeap(const void *ptr)    // Helper function 
{ 
 return (ptr >= kHeapStart && ptr <= kHeapEnd); 
} 
 



  5  

Problem 6: Homestar Runner: The System Is Down 
a) Consider the following record definition: 

 
typedef struct { 
 int coachz; 
 short *thecheat[2]; 
 homestarrunner **strongbad; 
} homestarrunner; 
 
void pompom(homestarrunner strongmad, homestarrunner *marzipan) 
{ 
 char bubs[4]; 
 bubs[*bubs] = *(marzipan->thecheat[strongmad.coachz]); 
 ((homestarrunner *)(strongmad.thecheat))->strongbad += *(int *)bubs; 
} 
 
Generate code for the entire pompom function. 
 
// line 1 
SP = SP – 4;  // make space for 4 characters on the stack 
 
// line 2 
R1 =.1 M[SP];  // load *bubs 
R1 = SP + R1;  // prepare bubs + *bubs 
 
R2 = M[SP + 24]; // load marzipan 
R2 = R2 + 4;  // advance R2 to address thecheat[0] instead of coachz 
R3 = M[SP + 8]; // load strongmad.coachz 
R3 = R3 * 4;  // scale offset by sizeof(short *) 
R2 = R2 + R3;  // advance R2 to address thecheat[strongmad.coach] 
R2 = M[R2];   // pull thecheat[strongmad.coach] into R2 
R2 =.2 M[R2];  // pull short 
M[R1] =.1 R2;  // assign short to one byte at bubs + *bubs 
 
// line 3 
R1 = M[SP];   // load bubs[0-3] as a single int 
R1 = R1 * 4;  // scale by sizeof(homestarrunner *) 
R2 = SP + 24;  // prepare address of pretend strongbad 
R3 = M[R2];   // load old strongbad value 
R3 = R3 + R1;  // do pointer arithmetic 
M[R2] = R3;   // flush new value to strongbad 

 
// clean up (not require, though here for completeness) 
SP = SP + 4; 
RETURN; 
 

line 1  
line 2 
line 3 

return PC 

coachz 

thecheat[0] 

thecheat[1] 

strongbad 

marzipan 

bubs[0-3] 
SP 

strongmad 



  6  

b) Now generate code for the puppetthing function.  You needn’t draw the stack frame 
out, but it can only help. 
 
homestarrunner **puppetthing(homestarrunner *marshie,  
           homestarrunner& mrshmallow) 
{ 
 return (**puppetthing(&mrshmallow, *marshie)).strongbad; 
} 
  

 
 

R1 = M[SP + 8];  // &mrshallow is address of referenced objects 
R2 = M[SP + 4];  // passing *marshie by ref requires marshie be passed 
SP = SP – 8;   // make space for two params of recursive call 
M[SP] = R1;    // put &mrshmallow at the bottom 
M[SP + 4] = R2;   // place marshie above that 
CALL <puppetthing>  // call, expecting RV to be populated with a double ptr 
SP = SP + 8;   // clean up params 
R1 = M[RV];    // dereference RV to get homestarrunner * 
RV = M[R1 + 12];  // replace RV with contents of strongbad field relative 

       // to R1 address 
RET;     // answer is in RV… let’s get out of here…  

 
 
 
 
 
 
 
 
 
 
 
 
 

mrshmallow 

marshie 

SP 
mrshmallow 

marshie 

return PC 



  7  

Problem 7: The Hitchhiker’s Guide To The Galaxy 
Consider the following type and function definition: 

 
typedef struct { 
 short **arthur; 
  char ford[12]; 
  int trillian; 
  short zaphod[6]; 
} galaxy; 
 
static galaxy *hitchhikersguide(galaxy *mice, short **dolphins); 
static short *thanksforallthefish(galaxy marvin, int *deepthought) 
{ 
   marvin.zaphod[100] = deepthought[*marvin.ford]; 
   ((galaxy *)((galaxy *)(marvin.zaphod))->ford)->trillian = **marvin.arthur; 
   return hitchhikersguide(&marvin + 1, marvin.arthur)->arthur[10]; 
} 

 
Generate code for the entire thanksforallthefish function.  Be clear about what 
assembly code corresponds to what line. 
 
 
// line 1 
R1 = M[SP + 36];   // load deepthought 
R2 =.1 M[SP + 8];  // load *marvin.ford 
R3 = R2 * 4;   // scale by sizeof(int) 
R4 = R1 + R3;   // compute &deepthought[*marvin.ford] 
R5 = M[R4];    // load int of rhs 
M[SP + 224] =.2 R5; // flush to marvin.zaphod[100] 
 
// line 2 
R1 = M[SP + 4];  // load marvin.arthur 
R2 = M[R1];    // load *marvin.arthur 
R3 =.2 M[R2];   // load **marvin.arthur 
M[SP + 44] = R3;  // flush to trillian field 
 
// line 3 
R1 = SP + 36;   // load &marvin + 1 
R2 = M[SP + 4];  // load marvin.arthur 
SP = SP – 8;   // make space for params 
M[SP] = R1;    // load &marvin + 1 
M[SP + 4] = R2;  // load marvin.arthur 
CALL <hitchhikersguide> 
SP = SP + 8;   // clean up params 
R1 = M[RV];    // load arthur field of galaxy addressed by return value 
RV = M[R1 + 40];  // load 10th pointer to short in array of short pointers 
RET; 
 

line 1  
line 2 
line 3 
 

SP saved pc 

marvin.arthur 

marvin.ford[8…11] 

marvin.trillian 

marvin.zaphod[4…5] 

marvin.ford[4…7] 

marvin.ford[0…3] 

marvin.zaphod[2…3] 

marvin.zaphod[0…1] 

deepthought 



  8  

Problem 8: C++’s Dark Side 
 

class jedimaster { 
 
 public: 
    int luke(jedimaster *macewindu, jedimaster obiwan); 
    int& anakin(short *padme, jedimaster& leia); 
 
  private: 
    short council[4]; 
    short *yoda; 
}; 
 
int jedimaster::luke(jedimaster *macewindu,  
                     jedimaster obiwan) 
{ 
 obiwan.yoda += macewindu->council[40]; 
 return obiwan.anakin((short *) &obiwan, *this); 
} 
 
 
 
 
 
 
 
 
 

This was straightforward code generation, save for the fact that you needed to 
understand that k-argument methods operate just like k+1-argument functions, where 
the address of the relevant object is spliced in as argument 0 and everything else is 
shifted over to make room. 

 
// obiwan.yoda += macewindu->council[40]; 
R1 = M[SP + 20];   // load obiwan.yoda 
R2 = M[SP + 8];   // load macewindu 
R3 =.2 M[R2 + 80];  // load macewindu->council[40]; 
R4 = R3 * 2;    // scale offset by sizeof(short) 
R5 = R1 + R4;    // advance old value of obiwan.yoda by scaled 
offset 
M[SP + 20] = R5;   // flush back new value to obiwan.yoda 
 
// return obiwan.anakin((short *) &obiwan, *this); 
R1 = SP + 12;    // load &obiwan (and look! it's a short *!, too) 
R2 = M[SP + 4];   // load this 
SP = SP – 12;    // make space for three params (including this!) 
M[SP] = R1;     // initialize this  
M[SP + 4] = R1;   // initialize padme 
M[SP + 8] = R2;   // initialize leia 
CALL <jedimaster::anakin> 
SP = SP + 12;    // clean up parameters 
RV = M[RV];     // convert reference into a copy 
RET; 

 
 

line 1 
line 2 

saved PC 
SP 

this 

macewindu 

obiwan.council[0..1] 

obiwan.council[2..3] 

obiwan.yoda 

SP 
this 

padme 

leia portion built just 
before anakin 
method is called 


